Algorithm Class Mini-Contest 9

Problem: ROLLING

Time Limit: 1.0 seconds Memory Limit: 128 MB

Problem Description Jacob is playing a ball game on a machine. The machine can be visualised as a rooted tree with N nodes, numbered from 1 to N. Each node in the machine can be either empty or filled with a ball. When a ball is at a certain node, it will repeatedly roll down to an empty child node where its subtree contains the minimum node ID, until it is no longer possible.

Jacob will do Q operations, each being one of two types. The first type of operation asks Jacob to roll k balls from the root. It is guaranteed that the root is empty at this point in time and k balls can be inserted. The second type of operation asks Jacob to remove a ball from node x. It is guaranteed that node x is filled with a ball at that moment. The balls above node x will update their positions accordingly.

Input Format The first line contains two integers N and Q, the number of tree nodes and the number of operations. The next N lines describe the ball machine. Each of these lines contains one integer, the number of a node: the i-th of these lines contains the number of node is parent node, or 0 if node i is the tree root. Each of the next Q lines contains two integers and describes an operation to be performed. An operation of type 1 is denoted by 1 k where k is the number of balls to be added to the machine. An operation of type 2 is denoted by 2 x where x is the number of the node from which a ball is to be removed.

Output Format For each operation of type 1, output the number of the node where the last inserted ball ended up. For each operation of type 2 output the number of balls that rolled down after removing the ball from the specified node.

Limits These are the bounds on the input.

Subtask	Score	Additional Bounds
1	20	Each node has either 0 or 2 children.
2	26	No balls will roll down after type 2 operations.
3	31	There is exactly one type 1 operation, and it is the first one.
4	23	No other constraints.
All	-	$1 \le N, Q \le 10^5$

Sample Input

- 8 4

- 1 8
- 2 5
- 2 7
- 2 8

Sample Output